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Arbor Vitae (2006) for string quartet is James Tenney’s last work. The title presents the
image of a tree as the central metaphor for the work’s harmonic structure, which is

similar to the way tree branches emanate from other branches. The harmonic form of
Arbor Vitae is a series of related tonalities modulating through a richly populated,

extended just intonation pitch space. The piece explores the progression of single tonalities
expanding into multiple tonalities. This article examines the inner workings of Arbor

Vitae and the musical result. It documents the algorithm Tenney defined to generate the
piece and provides a history of the piece.
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Introduction

Arbor Vitae (2006), James Tenney’s last work, is a culmination of many of his ideas,
and understanding the piece can provide a certain comprehensive perspective on

Tenney’s work. The title presents the image of a tree as the central metaphor for the
work’s harmonic structure. The term ‘arbor vitae’ (‘tree of life’) appears in Cage’s

Empty Words (Cage, 1974). Considering Tenney’s interest in and scholarship on
Cage’s work, this is quite possibly an intentional allusion.

Ideas in Arbor Vitae Tenney had implemented in the past include deriving a pitch

set from the harmonic series, and on the macro-level, defining a single gestalt formally
articulated by several parameters. That form is perhaps best understood in Arbor Vitae

as a number of abstract ‘swells’ (see Polansky (1983), on the ‘swell idea’): an expanding
then contracting pitch range, a crescendo/plateau/decrescendo dynamic swell and an

increasing then decreasing temporal density (Tenney, 1988 [1964]). All of these
‘swells’ are applied simultaneously. In this sense, Arbor Vitae resembles many of

Tenney’s earlier works such as Diapason (1996), the Spectrum series (1995 – 2001), the
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computer pieces from Bell Labs (1961 – 1964), the Swell pieces (1967 – 1971) and a

great many others.
Arbor Vitae also introduces radical extensions of earlier ideas. For example, pitches

are derived from harmonics up to the 1331st partial, whereas earlier works tend to
use the first 64 partials or fewer. In addition, the evolving harmonies are determined

by a complex, time-variant probabilistic scheme typical of Tenney’s work, but
executed in Arbor Vitae in a unique way.

Arbor Vitae explores the progression of single tonalities expanding into multiple

tonalities. The harmonic structure of the piece is similar to the way tree branches
emanate from other branches. We can see a tree—or this piece—at various levels of

remove, various perspectives, from the detail of the outermost branches to the entire
tree as a single, simple, unified form. Despite the compositional rigor of Arbor Vitae,

hearing it performed is essential to understanding it. This technical description is
meant to complement that experience.

The Sound of Arbor Vitae

Arbor Vitae was completely generated by an algorithm defined by Tenney. Before
discussing the algorithm, I will give a general description of the sound of the piece.

Arbor Vitae is thirteen minutes long. The harmonic form of the piece is a series of
related tonalities (with overlapping transitions) modulating through a richly

populated, extended just intonation pitch space. The harmonic trajectory extends
quite far, in complex relationship to B-flat, the fundamental for the entire piece. The

harmonic space (Tenney, 1983), which at the beginning is populated exclusively with
pitches derived from higher primes, higher exponents and compound numbers,

expands inwards toward the fundamental. As the piece progresses, newly introduced
pitches tend to be more closely related to B-flat, or to use Tenney’s own terminology,
tend to progress from having greater harmonic distances to lesser harmonic

distances, in relation to the fundamental. However, pitches distantly related to the
fundamental sound throughout the entire duration of the piece, but the ratio of

distantly related pitches to closely related ones gets smaller and smaller. Thus, the
harmonies comprising all sounding pitches actually become more complex

throughout much of the piece.
Arbor Vitae begins with soft, long, sustained tones in the uppermost part of the

string quartet’s range, primarily played as artificial harmonics or with high stopped
strings. The relationships between sounding pitches in the beginning are mostly
simple intervals such as just thirds, fifths and minor sevenths, even though at this

point they are distantly related to the fundamental. As the piece progresses, harmonic
shifts occur more frequently, the tone durations decrease and there is a continual

crescendo. The pitch range gradually expands as well: the upper limit of the range
remains constant while the lower limit descends. After 104000, pitches begin to imply

multiple tonalities simultaneously. The lower limit of the pitch range continues to
descend, resulting in more and more tones played with stopped strings or as natural

harmonics. The sound of the ensemble becomes more robust, active, louder and less
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ethereal. Past 403000, tones continue to shorten and get louder. The harmonic space

continues to expand inwards, but does not yet include the B-flat. Thus, the rapidly
shifting harmonies imply more and more tonalities at once.

Seven minutes into the piece, the pitch range begins to contract. The upper limit
of the range, which has remained constant until this point, begins to descend. By

800000, the first sounding of the B-flat has occurred and the piece achieves a maximal
intensity: the dynamic level reaches a loud plateau and tone durations are (on
average) the shortest in the piece. By this time, tones are primarily realized with

stopped strings or as natural harmonics. The upper limit of the pitch range continues
to descend until ten minutes into the piece. During this time, the activity shifts to the

lower instruments (viola and cello), which play short tones while the violins hold
relatively longer ones at higher pitches. By this point, the harmonies are more clearly

related to the B-flat fundamental. From 1000000 until the end, the upper and lower
limits of the pitch range ascend back to the uppermost part of the string quartet’s

range. Tone durations lengthen and the dynamic level softens. The timbre returns to
the more ethereal texture of the beginning. Arbor Vitae ends as it begins, with one
exception. At the beginning, pitches are all distantly related to the fundamental. At

the end, all available pitches are active. At the beginning, only the outermost branches
are heard; by the end, we hear the entire ‘tree’.

Harmonic Overview

In Arbor Vitae, a ‘root’ is some harmonic (integer multiple) of B-flat1,1

(approximately 58.27 Hertz). The sounding pitch classes are derived from harmonics
of successively chosen roots, called ‘branches’—that is, pitches are derived from

harmonics of harmonics. Thus, every pitch in the piece is harmonically related to B-
flat. Branches are calculated by one or more multiplications on the chosen root by 1,
3, 5, 7 or 11.2 For example, if a branch is 105 and the chosen root is 3, the branch was

calculated by 3 � 5 � 7 and the sounding pitch class is G 743¢.3 Sometimes the chosen
root is simply multiplied by 1 so that the branch equals the chosen root—that is, the

branch is the 1st harmonic of the chosen root. Roots and branches lie on what
Tenney called ‘diagonals’. A diagonal is a set of harmonics (in relation to the

fundamental) that have the same number of prime factors (not necessarily distinct).
The fundamental is the only harmonic on the 1st diagonal. The 2nd, 3rd and 4th

diagonals comprise harmonics with 1, 2 and 3 prime factors, respectively.
Figure 14 shows the relationships between the harmonics of the fundamental that

derive the pitches in Arbor Vitae. As mentioned earlier, Tenney considered these

relationships as a function of harmonic distance in harmonic space. In Arbor Vitae,
harmonic distance in relation to the fundamental is correlated to diagonal. Pitches

are displaced by octaves to bring them into the string quartet’s instrumental
range. For example, only octave displacements of the fundamental and high partials

occur.
Early in the piece, roots lie on the 3rd diagonal and branches lie on the

4th diagonal. During this time, there is one tonality at any moment. In Figure 2
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Figure 1 Harmonic structure. All graphs are transcribed from Tenney’s original notes.

(2500 – 4000), the harmony comprises tones of the same pitch class as partials
(branches) of the currently chosen root, which is the 15th harmonic of the
fundamental (even though members of the 15th harmonic’s pitch class, approxi-

mately A 712¢, are not sounding). For example, the C-sharp 725¢5 in the 1st violin
part is a just major third (derived from the 5th partial) above A 712¢, which is a just

major seventh (derived from the 15th partial) above B-flat. In Figure 2, a cents
deviation is written directly above each note. The top number next to the arrow

extending from each note indicates the partial in relation to the root and the bottom
number indicates the partial in relation to the fundamental.

Figure 3 (103000 – 104000) shows a root transition from the 49th partial to the 9th
partial of the fundamental. Both roots lie on the 3rd diagonal because 49 and 9 are
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Figure 2 Score excerpt (2500 – 4000). ª 2006 James Tenney. All score excerpts from Arbor
Vitae used by permission. Published by Frog Peak Music (http://www.frogpeak.org).

Figure 3 Score excerpt (103000 – 104000).
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7 and 3 squared, respectively. The number next to the arrow extending from each

note indicates the partial in relation to the fundamental. Note that the numbers to
the left of the dashed line are multiples of 49, and the numbers to the right of the

dashed line are multiples of 9. In this example, there are branches that equal the
root, 9.

As the piece progresses, roots lie on the 2nd, then 1st diagonal. This results in
increasingly polytonal harmonies since sets of branches may share a common divisor
that is not the root. Also, pitches may simultaneously imply more than one tonality

since a branch may be a compound integer in relation to the root. For example, the
45th harmonic of B-flat (E 710¢) is the 5th partial of the 9th harmonic (C þ4¢), and

the 3rd partial of the 15th harmonic (A 712¢).
Figures 4 and 5 (504000 – 505000 and 602000 – 603000, respectively) show harmonies

consisting of multiple tonalities. Lines connect pitches in the same tonality. The
top number next to each note indicates the harmonic (in reference to the

fundamental) of the same pitch class as the written note. The bottom left number
indicates the harmonic of B-flat that is the greatest common divisor of the notes
connected by lines. The bottom right number indicates the harmonic (in relation

to the harmonic indicated by the bottom left number, the greatest common
divisor) of the same pitch class as the written note. Note that multiplying the

Figure 4 Score excerpt (504000 – 505000).
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bottom numbers results in the top number. For example, the set of pitches com-

prising B-flat 727¢, E 710¢, G þ6¢ and F-sharp 745¢ in Figure 5 can be heard
and analyzed as implying one tonality since the harmonics (in relation to the

fundamental) they are derived from (63, 45, 27 and 99, respectively) have a
common divisor of 9 (Cþ4¢). Thus, they are in the tonality of C þ4¢ and can be

analyzed as the 7th, 5th, 3rd and 11th harmonics, respectively, of the 9th
harmonic of B-flat.

Eventually, members of the entire pitch set sound including the B-flat, the

fundamental of the entire piece. Figure 6 shows all the pitches in the piece,
along with their rational ratios, absolute interval size and cents deviations

from the nearest pitch in 12-tone equal temperament. As mentioned in the intro-
duction, time-variant pitch ranges, amplitude contours and density changes

also articulate the form of Arbor Vitae. These are discussed in the following
section.

The Algorithm

Calculating Roots

Each possible root (rt) has two corresponding variables (rtprob and rtpsum) directly
related to its probability.6 The rtprob of each rt is initialized to 1ffiffiffi

rt
p . rtpsum is the sum

of the rtprobs of all roots on the same diagonal that are less than or equal to that
particular root. For example, rt¼ 33 lies on the 3rd diagonal and the initial

Figure 5 Score excerpt (602000 – 603000).
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rtpsum ¼ 1ffiffiffiffi
33
p þ 1ffiffiffiffi

25
p þ 1ffiffiffiffi

21
p þ 1ffiffiffiffi

15
p þ 1ffiffi

9
p � 1:18383. Then, the sum of all rtprobs on a

given diagonal (dpsum) is calculated. dpsum is equal to the rtpsum of the largest
root on that diagonal. The initial dpsum for the 3rd diagonal can be written as

follows:

dpsum ¼ 1ffiffiffiffiffiffiffi
121
p þ 1ffiffiffiffiffi

77
p þ 1ffiffiffiffiffi

55
p þ 1ffiffiffiffiffi

49
p þ 1ffiffiffiffiffi

35
p þ 1ffiffiffiffiffi

33
p þ 1ffiffiffiffiffi

25
p þ 1ffiffiffiffiffi

21
p þ 1ffiffiffiffiffi

15
p þ 1ffiffiffi

9
p � 1:83543:

Starting from time 0, successive roots are chosen to calculate branches. Each
chosen root (crt) has a corresponding start-time (strt).7 The diagonal a chosen root

lies on (rdiag) is determined by the following piecewise equation over time:

rdiag ¼
3 strt < 100
2 strt < 260
1 strt � 260

(

Figure 6 Entire pitch set of Arbor Vitae. The numerators of the ‘Ratios’ correspond to the
harmonic structure (illustrated in Figure 1) and each denominator is set to the greatest
power of 2 that is less than the numerator (moving all pitches to within one octave). The
‘Cents’ column gives the absolute interval size (from the 1/1). ‘Pitch Class’ is given with a
cents deviation from the nearest tempered pitch. Pitch spellings in this figure and in the
score are consistent with spellings in Tenney’s notes.
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To choose a root, a random number (rand) is generated such that rand 2 R and

0� rand� dpsum. The chosen root (crt) is the rt on the current diagonal (rdiag) with
the next greatest rtpsum in relation to rand. For example, at time 0 (rdiag¼ 3), if

rand¼ 0.84276, then crt¼ 25, since the rtpsum of 25 is approximately 1.00975 and
the rtpsum of the next lowest root, 21, is app 0.80975.

After every crt is determined, the rtprobs of all roots on the current rdiag (except
for the root equal to crt) are recalculated as follows:

if ðrtprob ¼¼ 0Þ; then rtprob ¼ 1ffiffiffiffi
rt4
p ;

else if rtprob ¼¼ 1ffiffiffiffi
rt4
p

� �
; then rtprob ¼ 1ffiffiffiffi

rt3
p ;

else if rtprob ¼¼ 1ffiffiffiffi
rt3
p

� �
; then rtprob ¼ 1ffiffiffiffi

rt
p ;

Then, rtprob of the root equal to crt is set to 0 and all the rtpsums and the dpsum of
that diagonal are recalculated. Thus, after a root is chosen, three more roots must be

chosen until the rtprob of that root returns to its initialized value. Note that at the
beginning of the piece and every time rdiag changes, roots more closely related to the

fundamental are favored because of how the rtprobs are initialized. The recalculation
of probabilities after a root is chosen ensures that the same root will not be chosen

twice in a row and that there will be many different roots chosen throughout the
piece. That is, there will be a quasi-uniform distribution of roots.

The duration of a chosen root (rdur) is the amount of time during which branches are
calculated from that root. As the root durations decrease (roots are chosen more

frequently), the harmonies shift more rapidly. rdur is determined by the variables
exrmax8 (the maximum root duration exponent) and exrmin (the minimum root
duration exponent). exrmax is calculated by the following piecewise function over

time:

exrmax ¼

5� :5 strt
160 strt < 160

4:5þ :25 strt�160
100 strt < 260

4:75� :5 strt�260
80 strt < 340

4:25þ :25 strt�340
80 strt < 420

4:5� :5 strt�420
60 strt < 480

4 strt < 600
4þ strt�600

180 strt � 600

8>>>>>>>><
>>>>>>>>:

exrmin is always exrmax – 1. A random number (rand) is generated such that

rand 2 R and exrmin� rand� exrmax then rdur¼ 2rand. The following graphs show
the range between exrmax and exrmin (Figure 7) and the range of rdur (Figure 8)

throughout the piece.
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Calculating Branches

For every chosen root, from the start time of the root (strt) to strtþ rdur, several
branches are calculated using the variables nmult and canReqB. nmult is the number

of multiplications that will be performed on the currently chosen root to calculate a
branch. canReqB is an integer indicating whether or not a branch can equal the

chosen root: 0 if it can and 1 if it cannot. nmult and canReqB are determined by the
following piecewise equations over time:

Figure 7 Range between exrmax and exrmin over time.

Figure 8 Range of rdur over time.
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nmult ¼
1 strt < 100
2 strt < 260
3 strt � 260

(
; canReqB ¼

1 strt < 60
0 strt < 100
1 strt < 160
0 strt < 260
1 strt < 420
0 strt � 420

8>>>>><
>>>>>:

Together with rdiag, these variables determine the set of diagonals on which a branch

can lie (bdiagset). bdiagset is constructed of all diagonals from rdiagþ canReqB to
rdiagþ nmult. In set notation:

bdiagset¼ {rdiagþ canReqB, rdiagþ canReqBþ 1, . . ., rdiagþ nmult}

. Example 1: If strt is at 10 seconds, branches will only lie on diagonal 4 since

rdiag¼ 3, nmult¼ 1 and canReqB¼ 1.
. Example 2: If strt is 250 seconds, branches can lie on diagonals 2, 3 and 4 since

rdiag¼ 2, nmult¼ 2 and canReqB¼ 0.

Together, rdiag and bdiagset delineate six differences between the constructions of

harmonies over the course of the piece. Figure 9 shows when these different ‘states’
occur, which are expressed by the following piecewise equation:

6 changes ¼

1Þrdiag ¼ 3; bdiagset ¼ f4g strt < 60
2Þrdiag ¼ 3; bdiagset ¼ f3; 4g strt < 100
3Þrdiag ¼ 2; bdiagset ¼ f3; 4g strt < 160
4Þrdiag ¼ 2; bdiagset ¼ f2; 3; 4g strt < 260
5Þrdiag ¼ 1; bdiagset ¼ f2; 3; 4g strt < 420
6Þrdiag ¼ 1; bdiagset ¼ f1; 2; 3; 4g strt � 420

8>>>>>><
>>>>>>:

Note that bdiagset is the same from sections 2 to 3 and 4 to 5. However, the fact that
rdiag changes between these sections affects how branches are chosen. This will

become clear after the explanation of a branch calculation.
Each chosen branch has a corresponding start-time (stbr). Starting from time 0,

successive branches are calculated by nmult multiplications on crt. Each
multiplication is by 1, 3, 5, 7 or 11. Like rt, each one of these multipliers (mult)

has two corresponding variables (multprob and multpsum) directly related to its
probability. Every time a new root is chosen, the multprob for each multiplier is set to

Figure 9 Six harmonic states over time.
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1ffiffiffiffiffiffiffi
mult
p and multpsum is the sum of the multprobs of all multipliers less than or equal to

that particular multiplier. For example, directly after a new root is chosen, mult¼ 7
has a multpsum ¼ 1ffiffi

7
p þ 1ffiffi

5
p þ 1ffiffi

3
p þ 1 � 2:40253. Then, the sum of all multprobs

(msetpsum) is calculated. msetpsum is equal to the multpsum of the largest multiplier,
11. For the first multiplication, a random number (rand) is generated such that

rand 2 R and canReqB5 rand�msetpsum. Thus, a branch cannot equal the chosen
root if canReqB¼ 1. For each successive multiplication, rand 2 R and 05 rand�m-
setpsum (allowing a branch to equal the chosen root). The chosen multiplier (cmult)

equals the mult with the next greatest multpsum in relation to rand. For example,
within the first minute of the piece and directly after a new root is chosen (rdiag¼ 3,

nmult¼ 1, and canReqB¼ 1), if rand¼ 2.25867, then mult¼ 7, since the multpsum of
7 is approximately 2.40253 and the multpsum of the next lowest multiplier, 5, is

approximately 2.02456. If crt is 15, then br¼ 15 � 7¼ 105.
The calculation of a branch can be written as follows:

br ¼ crt;

for ðint i ¼ 0; i < nmult; iþþÞf
choose cmult;

br ¼ br � cmult;

g

Once a branch is chosen, multiplier probabilities are recalculated as follows:

if ðmultprob ¼¼ 0Þ; then multprob ¼ 1ffiffiffiffiffiffiffiffiffiffi
mult4
p ;

else if multprob ¼¼ 1ffiffiffiffiffiffiffiffiffiffi
mult4
p

� �
; then multprob ¼ 1ffiffiffiffiffiffiffiffiffiffi

mult
p ;

Then, the multprob of the multiplier equal to cmult is set to 0 and all the multpsums

and the msetpsum are recalculated. Note that these values are not recalculated upon
every multiplication; they are only recalculated after a branch is chosen (after nmult

multiplications). Otherwise, certain branches could not be chosen. For example, if the
multprob of 3 is set to 0 after being chosen on the first multiplication and nmult is 2,

then a branch cannot equal rt � 3 � 3.
Directly after a root is chosen, lower multipliers have a higher probability because

of how the multprobs are reset. However, as with choosing roots by their
corresponding rtprobs, the recalculation of the multprobs ensures a quasi-uniform
distribution of the multipliers over time. Note that branches more closely related to

the chosen root do not necessarily have a higher probability of occurring. As nmult
increases, branches that are compound integers (i.e., have more divisors) may occur

more often.9

The duration of a branch (bdur) is directly related to rdur because the maximum

branch duration exponent (exbmax) is always equal to exrmax – 2.5. Shorter branch
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durations result in a higher temporal density and, as with shorter root durations,

more rapidly changing harmonies.
Even though several branches may be calculated upon a given root, exbmax is only

recalculated when a new root is chosen since it is based on exrmax. exbmax is not
recalculated or interpolated for every new branch. The minimum branch duration

exponent (exbmin) is always exbmax – 1. A random number is generated such that
rand 2 R and exbmin� rand� exbmax then bdur ¼ 2rand

2 .10 The following graphs
show the range between exbmax and exbmin (Figure 10) and the range of bdur

(Figure 11) throughout the piece.

Deriving Pitches from Branches

For every branch, there is a series of calculations to derive a pitch that is within the
available pitch range at that moment. The available pitch range over time (graphed in

Figure 12) has low and high limits (in cents from the fundamental) calculated by the
following piecewise equations:11

low¼

7800� 1200 stbr
40 stbr< 40

6600 stbr< 100
6600� 1800 stbr�100

60 stbr< 160
4800 stbr< 260
4800� 2400 stbr�260

80 stbr< 340
2400 stbr< 420
2400� 1800 stbr�420

60 stbr< 480
600 stbr< 600
600þ 5400 stbr�600

180 stbr� 780

8>>>>>>>>>>>><
>>>>>>>>>>>>:

; high¼
7800 stbr< 420
7800� 5400 stbr�420

180 stbr< 600

2400þ 5400 stbr�600
180 stbr� 780

8<
:

Figure 10 Range between exbmax and exbmin over time.
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For each branch, the low and high values are calculated based on stbr and a pitch

(lpc) (in cents from the fundamental) is derived from the branch such that lpc¼ log2

(br)mod1200. Note that this pitch is within one octave of the fundamental,

Figure 12 Pitch range over time.

Figure 11 Range of bdur over time.
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B-flat1. Then, a set of integer multipliers (imultset) is determined such that, when

multiplied by 1200 and added to lpc, is a pitch between the low and high values.12 In
set notation:

imultset ¼ fmjm 2 Z and low � lpc þ 1200m � highg:

The sounding pitch is determined by choosing a number from imultset at random,
multiplying it by 1200, and then adding that to lpc. For example, if br¼ 15 and

stbr¼ 420, then lpc¼ 1088, low¼ 2400, high¼ 7800 and imultset¼ {2, 3, 4, 5}. If 2 is
chosen randomly from imultset, then the pitch is placed 3488¢ (which equals

1088þ 1200 � 2) above B-flat1 (the sounding pitch is A4 712¢).

Assigning Tones to Instruments and Temporal Density

The pitch and the corresponding start-time of a tone (stbr) is assigned to a
particular instrument based on the following guidelines and exceptions. First, after
a tone is assigned to an instrument, that instrument cannot be assigned a new

tone until at least two tones have been assigned to other instruments. This is to
ensure that tones are distributed more or less evenly among the instruments.

Second, Rule 1 may only be broken when the pitches of two or more successive
tones fall below the violins’ low F. (String IV of each violin is tuned down; see the

section String Tunings and Timbre, below). In this case, the tones are assigned to
the viola and cello in alternation. And third, Rules 1 and 2 may only be broken

when the pitches of two or more successive tones fall below the viola’s B-flat.
(String IV of the viola is also tuned down.) In this case, the cello can receive

several tones in a row.
Since the tones are more or less evenly distributed to the different instruments

throughout much of the piece, the average tone duration is usually approximately

four times greater than the average branch duration. The exceptions (2 and 3)
primarily occur after 420 seconds when the upper limit of the available pitch range

descends. As a result, the viola and cello play shorter, lower tones than the violins
play. Note that the only time a tone’s duration is equal to bdur is when the cello is

assigned more than one tone in a row. Since a pitch’s duration is usually longer than
the duration of the branch deriving the pitch, the harmonic transitions typically

overlap.

The Flow of the Algorithm

After an instrument is assigned a tone, the start-time of the branch is incremented by

the branch duration and a new branch is calculated. Once stbr is greater than the
start-time of the current root plus the root duration, the start-time of the root is

incremented by the root duration and a new root is chosen. The entire length of the
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work is 780 seconds (13 minutes). The general algorithm of the piece can be written

in pseudo-code as follows:

strt ¼ 0;

stbr ¼ 0;

initialize rtprobs; rtpsums; and dpsum;

whileðstrt < 780Þf
choose rt;

recalculate rtprobs; rtpsums; and dpsum

calculate rdur;

ðreÞset multprobs; multpsums; and msetpsum;

whileðstbr < strt þ rdurÞf
calculate br;

recalculate multprobs; multpsums; and msetpsum;

calculate bdur;

calculate pitch placement;

assign tone to an instrument;

stbr ¼ stbr þ bdur;

g
strt ¼ strt þ rdur;

g

String Tunings and Timbre

Subtle, gradual changes in timbre occur throughout the piece based on the

time-variant pitch range and the tunings of the strings (Figure 13), which are
designed to enable as many tones as possible to sound as natural harmonics. All the

open strings are octave equivalents of harmonics 1, 3, 5, 7 and 11 of B-flat. As the
lower limit of the pitch range descends, more and more pitches are played as natural

harmonics.

Figure 13 String tunings.
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Dynamics

The loudness contour of the piece comprises three sections: a crescendo, a loud

plateau and then a decrescendo. In the score, the dynamics go from pianissimo to
forte and back, with intermediary levels linearly interpolated as shown in Figure 14.

The dynamics refer to the entire ensemble.

After the Algorithm: Score Generation

The algorithm was implemented in a computer application written in the BASIC

programming language. The application generated a list of pitches, each with a
corresponding start-time and instrumental assignment. The list was formatted for an

automatic transcriber with an accompanying playback module that I developed for
Tenney. The transcriber was written in Java using JMSL and JScore (Didkovsky,

1997 – 2007), which have versatile transcription objects. Tenney made decisions based
on these transcriptions, synthesized playbacks, data printouts and his own graphs.
After running the BASIC program and checking the code and output data several

times, Tenney felt that the algorithm was consistent and that all realizations would be
essentially equivalent. Nonetheless, he still wanted to choose from three generated

versions. After listening to synthesized playbacks of all three versions and studying
the output data, he selected the second realization. The current score is a

transcription of that data.
Additionally, Tenney was very specific about the score format (2 systems per page,

4 measures per system, 5 seconds per measure, with a proportional ‘space equals
time’ notation). He also decided to notate all pitches more than two octaves above

the highest open string of each instrument as artificial harmonics, along with a
performance instruction allowing the option of playing these tones by stopping the

Figure 14 Loudness contour.
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string if more comfortable for the performer. Many of these notational conventions

emanate from previous pieces. Tenney frequently referred to these pieces and also
reviewed old computer code. In particular, the distribution of tones among parts is

similar to the distribution of tones among voices in the piano piece, To Weave (a
meditation) (2003), and certain notational conventions, such as those for natural

harmonics, come from Diapason (1996).
Tenney passed away before proofreading a final score. A small group of people

familiar with his work helped make the final edition: Michael Pisaro, Michael Byron

and Larry Polansky to name a few. A high priority was given to making the score of
Arbor Vitae consistent with Tenney’s previous notational conventions, which were

used as precedents. The scores for Diapason (1996), To Weave (a meditation) (2003)
and the Spectrum series (1995 – 2001) were particularly important. Arbor Vitae’s

performance instructions were also modeled on the instructions from these scores.

History of Arbor Vitae

Jim and the Bozzini Quartet first discussed the creation of a new piece in November

2004 at a festival for Jim’s 70th birthday in Los Angeles. Jim began working on what
would become Arbor Vitae within the next several months. Though there is no

‘official’ commission date, the Bozzini Quartet applied to the Canada Council for the
Arts to assist the commission and received a positive reply in March 2006. They

premiered Arbor Vitae on 10 December 2006 at the California Institute of the Arts
during a festival celebrating the life and work of James Tenney.

In the spring of 2006, while living in Vienna, I was informed of James Tenney’s
diagnosis of a progressed cancer. Upon returning to the United States in late June, I

flew straight to Los Angeles to see him. During this first visit after the diagnosis, Jim
seemed well and optimistic despite the side effects of the chemotherapy. We spoke
about the projects he wanted to finish. These projects included publishing a book of

articles, finalizing a multiple-pitch perception algorithm and finishing his string
quartet, Arbor Vitae.

During my stay, I perused Jim’s notes and sketches for Arbor Vitae and began to
understand how the piece worked. On the day prior to my departure, Jim explained it

to me. The piece was completely planned out: conceptually finished. The main pro-
blem, given Jim’s illness, was writing the computer program to generate the piece. On

the last day of my visit, we developed a style of working together. As he talked me
through the steps of the algorithm, I made notes then programmed the steps, modify-
ing the BASIC program he had already begun. We made excellent progress that day.

This revitalized his hopes of finishing Arbor Vitae and moving on to the other projects.
Before leaving, I explained to Jim the changes and additions I made to his code.

Later in the summer of 2006, Lauren Pratt, Jim’s wife, asked if I would return to
Los Angeles to help Jim finish the piece. I went back to Los Angeles a week after

Lauren’s request. Immediately on arriving, Jim and I got to work and made rapid
progress. Jim was enthusiastic about our working dynamic. For a week we worked
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intensely, often more than ten hours a day. Jim needed to take rest breaks, which

allowed me to keep pace. On the evening of the day in which we first generated the
piece from beginning to end, Jim was ecstatic. The next day, Jim’s health deteriorated

somewhat and our progress slowed a bit. Nevertheless, the piece was finished before I
left. Less that two weeks later, after finishing what would be his last piece, James

Tenney passed away.
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Notes

[1] A subscript attached to a note name indicates octave placement. B-flat1 denotes 2 octaves
and a major second below middle C, which would be denoted as C4.

[2] The pitches of Arbor Vitae are in an 11-limit just-intonation (see Partch (1974) on
intonation limits).

[3] Deviation from the nearest pitch in 12-tone equal temperament is expressed in cents (one
hundredth of a tempered semitone) using a minus or plus sign and the cents symbol, ¢.

[4] All score examples and manuscripts of Arbor Vitae reprinted by permission.
[5] Note that the 15th partial is approximately 11.73¢ flat from the nearest equal tempered pitch,

and the 5th partial is approximately 13.69¢ flat. In Arbor Vitae, cents deviations are only
rounded from the harmonic of B-flat from which the pitch is derived.

[6] Throughout the article, variables are named similarly to the actual names of variables that
Tenney used.

[7] All time variables are in seconds.
[8] Before I worked with Tenney on Arbor Vitae, he had already defined an algorithm to

generate the piece. However, during the time we worked together, Tenney made a few
changes to his original algorithm. A change in exrmax was one of these. Originally, the
variable spanned from 4 to 6 instead of 4 to 5. This change was made so that roots were
chosen more frequently throughout much of the piece.

[9] A close examination of the time-variant probability schemes implemented in Arbor Vitae
shows that the possibility of a given branch depends on rdiag, nmult, canReqB, the rtprobs
and the multprobs, which are ultimately related to the size and number of prime factors of
that branch – that is, a branch’s probability is based on the harmonic distance with respect to
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the given root and the fundamental. Also, the probabilities are continuously being
recalculated so that the possibility of roots and branches that have not been chosen for an
extended period of time increases. An in-depth analysis of this complex, time-variant
probabilistic system and its musical result exceeds the scope of this article.

[10] The division by 2 for bdur shortens the average sounding tone durations throughout the
piece. It was another one of the few changes Tenney made from the original algorithm in
which bdur¼ 2rand.

[11] These piecewise equations were derived from a graph that I transcribed with Tenney after he
decided to alter his original one. In Tenney’s original graph, which uses a linear pitch scale,
some of the breakpoints determining the limits of the pitch range are drawn midway between
the B-flats at the vertical position of a tritone, but the vertical axis is labeled with F þ2¢ at
those vertical positions suggesting that the octaves be split harmonically into a just fifth and a
just fourth: breakpoints at B-flat and F þ2¢. In the transcribed graph, these breakpoints are
drawn at the same vertical position as in the original graph, but are labeled according to their
vertical position on a linear pitch scale thus splitting the octave equally into two tritones:
breakpoints at B-flat and E. Neither Tenney nor I noticed the discrepancy between the two
versions while studying the data outputs or listening to synthesized realizations of the piece.
The change affects only two pitch classes in the entire set of available pitch classes of the
piece: the E þ5¢ (derived from the 363rd partial of B-flat) and the F þ2¢ (derived from the
3rd partial of B-flat) may have been assigned to different registers.

[12] For the first 40 seconds, imultset may be empty since the pitch range is less than an octave. In
this case, the branch is discarded. This accounts for a silence at the beginning of the piece.
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